AFLCMC

A-10 ASIP Adaptation to Digital Maintenance Data

(Tactical Advantages, Lessons Learned and Future Plans)

Hazen Sedgwick A-10 SPO AFLCMC/WWAEJ 29 Nov 2016

Acknowledgements

- Mark L. Thomsen, Ph.D. A-10 ASIP Manager
- A-10 PLM implementation team
 - Jeff Howell A-10 SPO AFLCMC/WWAEJ
 - Richard Billings A-10 SPO AFLCMC/WWAEC
 - Marguerite Kassinger Northrop-Grumman Corporation
- A-10 ASIP Organic Analysis Team
- NLign Analytics Etegent Technologies, Ltd.
- Rick Mendoza ESTA

Outline

- Background
- Owning the technical baseline
- Operating the technical baseline organically
- A-10 ASIP needed tools and qualifications
- A-10 PLM Implementation
- Technical data package benefits
- Tactical advantage examples
- PLM interaction tool (NLign)
- Data capture at the point of maintenance
- Lessons learned
- Future efforts

Background

- Planned retirement
 - Funding pulled, not retired, no funds put back in POM
- Lost contractor support for configuration control
 - Multiple EOs against drawings, 50 page EOs for modifications
- SPO moved from Sacramento to HAFB lost physical files
- A-10 ASIP support group created 2003
 - Establishing a technical baseline
 - Organic capability to operate the baseline
 - Model Based Definition (MBD) for the New Wing
 - PLM implementation for configuration control of baseline data
 - MBD for the entire aircraft

Owning the Technical Baseline

VS.

Owning the baseline

OWNING and OPERATING the baseline!

- Configuration control & change management
 - Qualified individuals!
 - Applicable tools!
 - Focused team work!
 - Can do attitude!

Operating the Technical Baseline Organically

- Key components:
 - MBD & 2D drawing configuration control is the foundation
 - No hanging EOs
 - Personnel expertise and applicable tools to manage the baseline
- Required ASIP responsibilities: MIL-STD-1530D ASIP
 - Damage Tolerance Analysis (DTA) updates
 - Structural inspection requirements
 - Analyses for depot/field repairs (Static & DTA)
 - Risk analyses for fleet cracking observations
 - Risk based induction
 - Damage database
 - ASIP contracts (Testing, Teardowns, Repairs, Analysis, Drawing/Spec Updates)

- 3D CAD NX & Teamcenter
- Finite Element Analysis (FEA)
 - Detailed Finite Element Model (FEM) inserted into a global loads FEM
 - Boundary conditions more accurately simulated
 - Strain gauge validated

FEA load distribution

- Baseline structure and repair configuration
- Fastener loads
- Contact surfaces

Load re-distribution with crack propagation

- Stress intensity solution StressCheck
 - Unique Geometry/Loading not represented by standard solutions

- Damage Tolerance Analysis (DTA)
 - AFGROW, StressCheck, BAMF
- Technical data required for organic DTA
 - Usage Data / Loads / Stress Analysis → Stress Spectra

Material Data

- Fleet health PRoF
 - Update 11/2015
- Risk based induction
 - Condition and need

■ Fleet risk assessments

Current state of the A-10 PLM effort – Are we there yet?

Data migrating from other systems – Currently testing

Legacy analysis/reports
Serialized event data
107/202 data
Engineering analysis

The Death-Star-Trek

Adaption to the Current Digital Data Environment

- Configuration control
- Change management
- Technical data packages
- Service Lifecycle Management (SLM)
 - Condition based maintenance
 - Predictive analysis

How do we save \$\$ by controlling the 2D & 3D part data?

- Risk factors
 - Was the Government Furnished Information (GFI) correct?
 - Were there any Engineering Orders (EO) to change the drawing/definition in process when the data package was released?
 - Was the GFI to produce the part from a 2D drawing or 3D part Definition?
 - Who developed the manufacturing tool path code?

How do we save \$\$ and time by controlling the 2D & 3D part data?

Tactical Advantages Rapid Field Support (Bird Strike)

Bird Strike Area

Damage to Leading Edge

CAD Model of Repair

Final Installed Repair

CNC Milling of Repair Part

Test fit of 3D Printed Repair Part

Tactical Advantages Rapid ASIP Support (Canopy Lug)

- 29 Feb 2016 A-10 aircraft mishap at Osan Air Base, Republic of Korea
- 2 Mar 2016 A-10 Division made aware of mishap
- Utilized 'In-House' analytical expertise and provided Osan support within 48 hrs
 - Leveraged A-10 Model Based Definition (MBD)
 - Comparison of simple lug Finite Element Model (FEM) & a FEM with the actual lug geometry
 - · Identified appropriate analytical approach to support the situation
 - Provided procedures and analytical support to inspect the remaining AC Osan jets.

Tactical Advantages

Fleet Management

Risk-Based Induction

- Previously One Size Fits all approach to aircraft depot maintenance
 - Based on 2000 hour flight induction
- Now Visibility of individual aircraft configuration including damage and flight condition
 - Aircraft now inducted based on condition and need instead of calendar or flight hour threshold
- Benefits
 - \$100M savings to date based on reduced depot maintenance needs
 - Maintaining aircraft availability beyond 1.5X the original design service objective

Tactical Advantages Rapid data Collection and Communication

- A-10 PLM interaction Tool
 - NLign

PLM Interaction Tool (NLign)

Trend Analysis

HIDAR TIME IN SHIP

202/107 Analysis Support Reasons

EWA NCR Defect Description (Top 15)

Test and Teardown Cracking by Location

SSI Finding Damage Type

PLM Interaction Tool (NLign)

Data Capture at the Point of Maintenance

- A-10 Scheduled Structural Inspection (SSI) program.
 - Historically it takes 7-9 months from the asset induction date before Engineering sees SSI data
 - **©** Low quality
 - No ability for engineering to address data issues while the asset is open and accessible
 - Usually asset is back on an aircraft and ready for service when the maintenance data is received
 - Engineer Tech required to manually input data into database

Data Capture at the Point of Maintenance

- Aug-Sept 2016 NLign data collection test.
- Customized NLign data capture trendable
- Developed quick 'at a glance' reporting tool
 - Keep supervisors informed
 - Keep NDI tech and Mechanic in sync to work remaining

Data input screen

Coordination Report

Data Capture at the Point of Maintenance

Historic SSI Data Capture Process

Low Quality

VS.

NLign Data Capture Test Case

- Data delivered ~800% faster
- 3 Weeks from the day of induction till the final inspection was complete
- Data available the moment it was captured
- High Quality data!

Lessons Learned

- NLign was easy to understand and use by the Maintainers
- Most data is input by the NDI tech
 - Mechanic is required for dimensional data
- Keeping NDI techs trained to use NLign could be challenging
 - NDI techs rotate between weapon systems and shops monthly
 - Specific data capture software just being used by the A-10
- MX tough-books are still 32 bit not the required 64 bit system required for NLign
 - Different IT organization with conflicting views on upgrading tough books
- Engineering tech was present for support
 - Not a true 'hands off' test of the system
- MX Process Engineering is needed to develop the official procedures
- A-10 Wing Shop is eager to start a second round of testing
 - The first test allowed the shop to sell the asset sooner
 - Two more assets are ready to test the NLign tool

Lessons Learned

- Data control and communication is Key!
 - PLM data exchange specification
 - Data is controlled at one source
 - Data flow is not just 'one way'
- PLM solution must be tailored to the weapon system
 - A-10 new wing MBD vs Legacy MBD/part report/2D drawing hybrid
 - Needed interaction tools for analysis and communication to contractors/OEM
- Qualified individuals!
- Applicable tools!
- Focused team work!
- Can do attitude!

Future Plans

- Complete the data migrating legacy systems to Teamcenter
 - MBD/part number is the base structure for data to be related to
- Continue development on NLign to enable seamless communication of the data being managed in Teamcenter
 - Identify other data interaction tools that need to integrate with Teamcenter.
- Refine workflow processes within Teamcenter for data control
- Continue NLign testing with maintenance
 - Enhancement of smart fields for data input
 - Maintainer version of NLign with only applicable functionality to the job

Questions?

