

T-7A: An ASIP Overview

Author: Eric Buettmann DADT Lead Engineer, T-7A Program The Boeing Company

Presenter: Jonathan Nierling F-22 Air Vehicle DADT and Design Manager The Boeing Company

Presented at the 2023 Aircraft Structural integrity Program (ASIP) Conference

November 27-30, 2023

Copyright © 2023 Boeing. All rights reserved.

Not subject to U.S. Export Administration Regulations (EAR) (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130)

Today's Presentation

Purpose: How is the USAF's new trainer progressing with the 5 pillars of ASIP?

TASK I	TASK II	TASK III	TASK IV	TASK V
DESIGN INFORMATION	DESIGN ANALYSES & DEVELOPMENT TESTING	FULL-SCALE TESTING	CERTIFICATION & FORCE MANAGEMENT DEVELOPMENT	FORCE MANAGEMENT EXECUTION

Overview of the Aircraft
The T-7A ASIP
Full Scale Fatigue Test

T-7A Red Hawk Overview

All-new, purpose-built advanced pilot training system for the US Air Force

Red tails pay tribute to the legacy of the Tuskegee Airmen

T-7A Red Hawk Overview

- The T-7A aircraft is a high-wing, two-seat tactical training aircraft powered by a single General Electric (GE) F404-GE-103 afterburning turbofan engine
- Modular design driven by digital engineering
- Advanced manufacturing processes to increase efficiency in design and assembly
- Compared to traditional aircraft development programs, T-7A experienced:
 - A 75% increase improvement in first-time engineering quality
 - An 80% reduction in assembly hours
 - A 50% reduction in software development and verification time

T-7/A RED HAWK

T-7A Red Hawk Milestones

- Concept to first flight in three years: '13 '16
- Contract Award: Sept '18
- Engineering Manufacturing and Development (Task I and II): '18 Ongoing
- First production A/C rollout: Spring '22
- Full Scale Static Test Completion: Spring '23
- Military Flight Release: Spring '23
- First flight w/ USAF pilot: Summer '23
- Full Scale Fatigue Test Start: '24

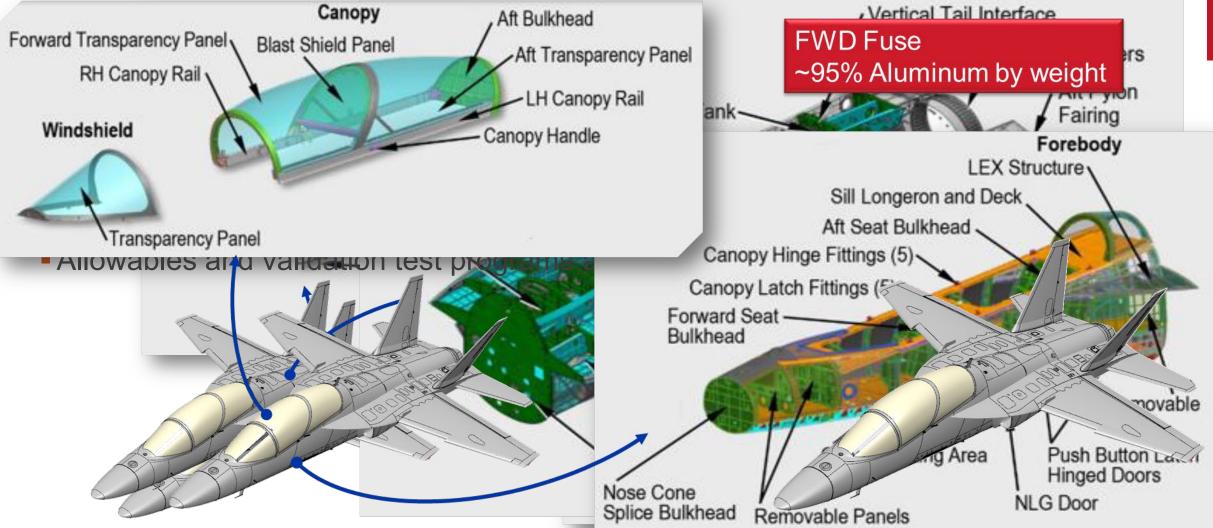
A-2 at the T-7A rollout ceremony Spring '22

The Pillars of ASIP: T-7A Status			Established	Executing Planning	
Task I	Task II	Task III	Task IV	Task V	
Design Information	Design Analyses & Development Testing	Full-Scale Testing	Certification & Force Mgmt Development	Force Mgmt Execution	
ASIP Master Plan	Material & Structural Allowables	Static Tests	Structural Certification	L/ESS Execution	
Design Service Life & Design Usage	Loads Analysis	First Flight Verification Ground Tests	Strength Summary & Operating Restrictions	IAT Execution	
Structural Design Criteria	Design Loads/Environment Spectra	Flight Tests	Force Structural Maintenance Plan	Analytical Condition Inspection	
DADT Control	Structural Analysis (Stress, DADT, Sonic Fatigue, Vibe, Aero, Survivability)	Durability Tests	Loads/Environment Spectra Survey System Development	Repairs	
Corrosion Prevention & Control	Corrosion Assessment	Damage Tolerance Tests	Individual Aircraft Tracking System Development	Force Mgmt Database Execution	
Nondestructive Inspection	Mass Properties Analysis	Climatic Tests	Force Mgmt Database Development	Updates: DADTA, L/ESS & IAT, NDI, CPC	
Selection of Materials, Processes, Joining Methods, & Structural Concepts	Design Development Tests	Interpretation & Evaluation of Test Findings	Technical Orders	& Corrosion, FSMP, Tech Orders, Structural Risk & Certification,	
	Structural Risk Analysis Economic Service Life Analysis	Resolution of Test Findings		Economic Service Life	

Task I: Design Information

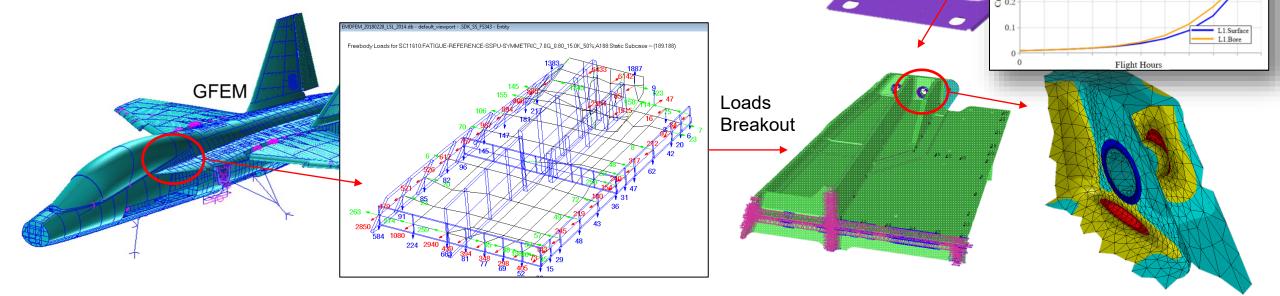
- The T-7A ASIP was designed to meet all the reqs of AFI 63-140 / MIL-STD-1530C as they apply to a newly developed aircraft
- •Some adjustments to adhere to 1530D:
 - Part criticality classification
 - Resolution of Test Findings
 - Force management database development and technical orders
 - ACI program
- ASIP Master Plan established
- DADT Control Plan established to incorporate DADT into the design, fabrication, assembly and support of the T-7A air vehicle
 - Part classification and control definitions
 - DADT Control Board oversees implementation of the Control Plan

T-7/A RED HAWK


- **Task I: Design Information**
- DADT Design requirements
 - Durability life requirement of 16,000 hours from 0.010" initial flaw for 90th percentile usage spectrum
 - Damage tolerance life requirement of 16,000 hours from 0.050" initial flaw for average usage spectrum

Classification	Requirement	Initial Flaw	Spectrum	Required Analytical Life
FCT / FC	Crack Growth	0.05	50th Percentile	16000
	Crack Growth	0.01	90th Percentile	16000
Durability Critical	Crack Growth	0.01	90th Percentile	16000
Normal Controls	Same as Durability Critical			

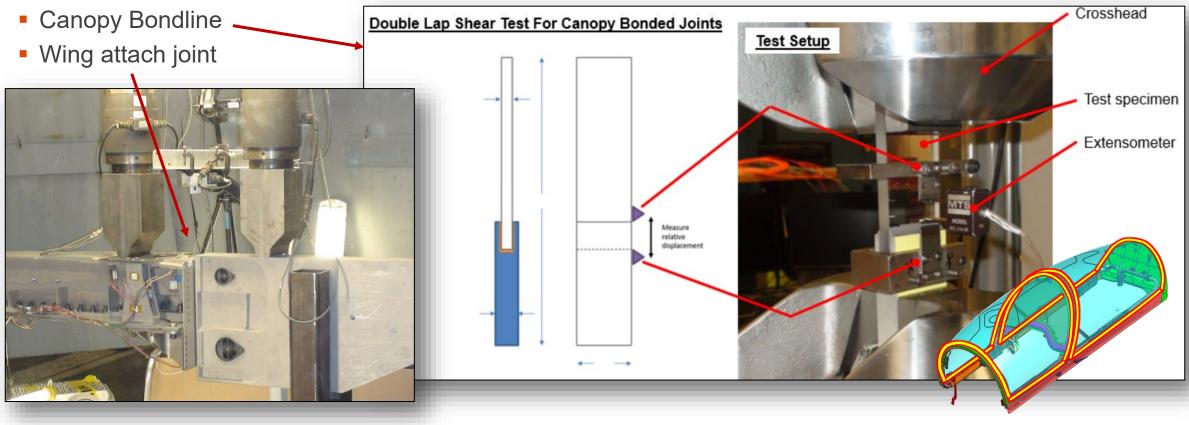
Task I: Design Information



T-7A RED HAWK

Task II: Design Analysis and Development Test

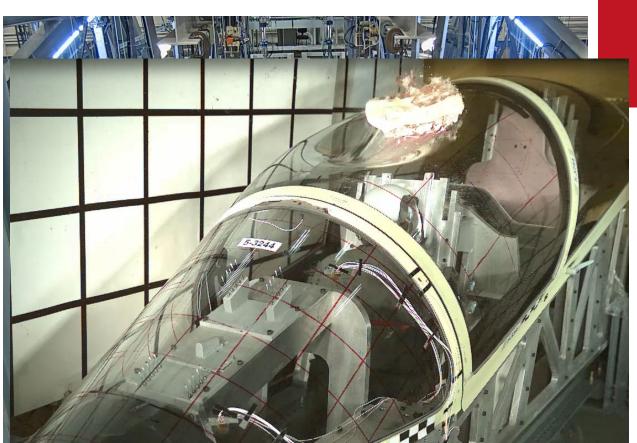
- Task II is largely established for T-7A
 - Structural analysis performed with respect to loads, stress, DADT, Sonic Fatigue, Vibe, etc.
- For DADT, objective was for all structure to meet required analytical life to remove need for inspections during design service life
 - For all structural components, crack growth analysis and crack initiation assessment performed – CI not a governing criteria
- Typical damage tolerance analysis flow:



0.3

T-7A RED HAWK

Task II: Design Analysis and Development Test


- Master Event Spectrum (MES) is developed incorporating actual and simulated time histories of the various maneuvers in the T-7A mission mix
 - MES incorporates Buffet and Ground Handling Events in addition to the Maneuver Events
- Development testing ex's:

Task III: Full Scale Testing

- Task III in full swing, several tests recently completed or in work:
- Static Test Completed early '23
 - Demonstrated Airframe Capability to 150% Limit Load
 - Successful FEM Correlation with No Internal Loads FEM Updates
- Loads Calibration Test Completed late '22
 - Developed validated load equations
- Canopy Proof Pressure Testing
- Bird-Strike Testing

Structural Integrity & Validated Internal Loads Model

Task III: Full Scale Testing – Fatigue Test

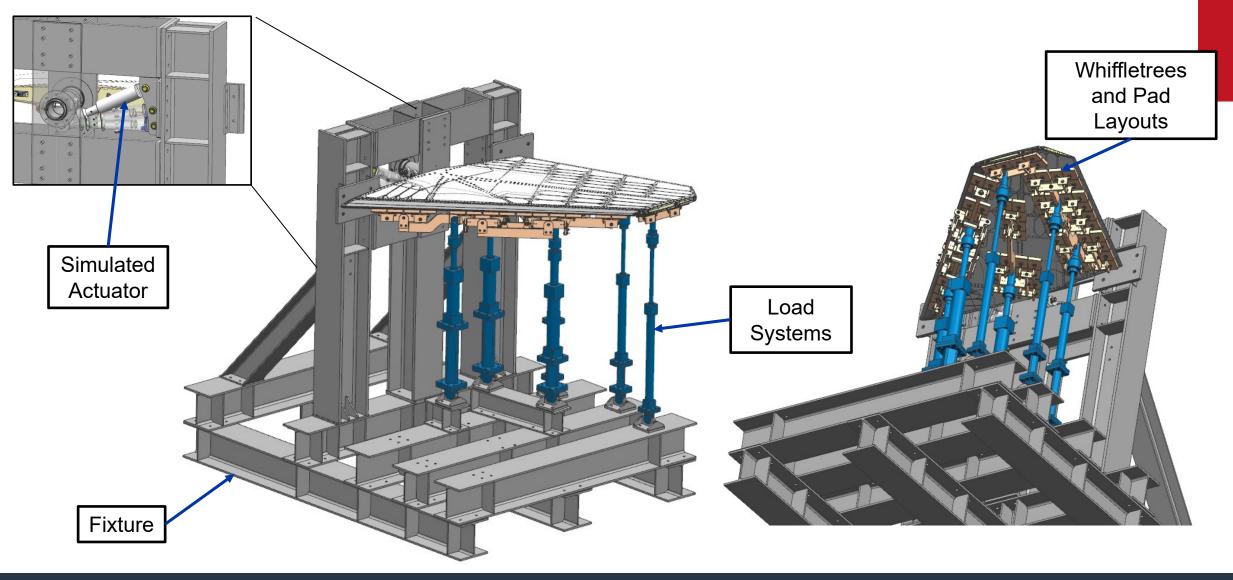
- Objective: To generate data to satisfy the DADT reqs. of MIL-STD-1530C
 - First and Second Lifetimes -> Durability Test Req
 - Third Lifetime -> Damage Tolerance Req
 - If major structural failure occurs during 3rd Lifetime, but test has not reached the end of the lifetime, test will be considered complete
- Post-Test Teardown will be conducted to correlate analysis to test findings
 - Correlated analysis shows failure would not occur during 2nd LT – Location meets certification criteria
- Correlation required for certification

Fatigue Test Article in Fixture

Test start scheduled for early '24

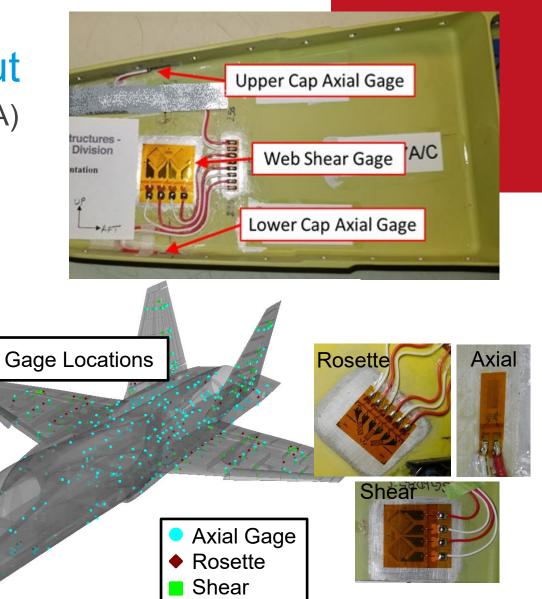
Fatigue Test: Major Systems

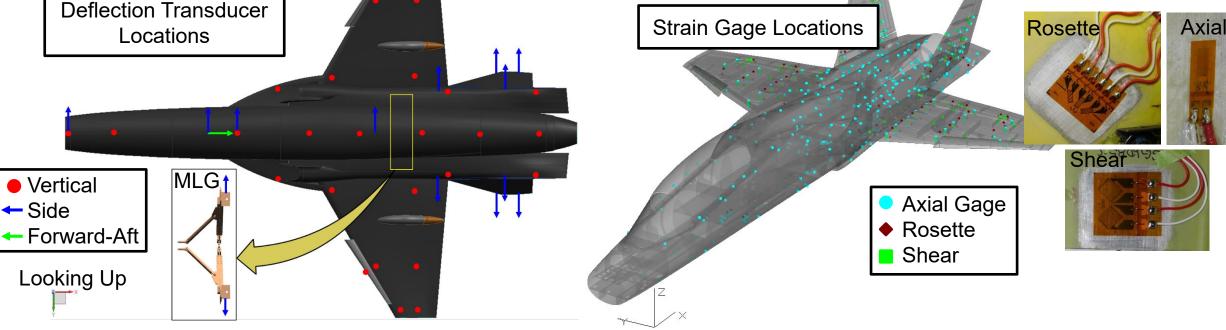
Hydraulic System Whiffletrees Simulated Hardware Pad Layouts Beams to distribute Attaches to major load to pads Pad locations structural interfaces Tension only & Pad sizes **Discrete load application** Tension + points compression styles Load Systems Access Platforms • Hydraulic cylinder + load cell assemblies Fits around all other Controlled load • hardware Fixture application magnitude Reacts load system loads Positions load systems Common Fixture with Static and Loads Cal


Not Pictured

Pressurization System (cockpit)

Load Control/Data Acquisition Systems


Task III: Full Scale Testing - Horizontal Stabilator Test Setup



T-7A RED HAWK

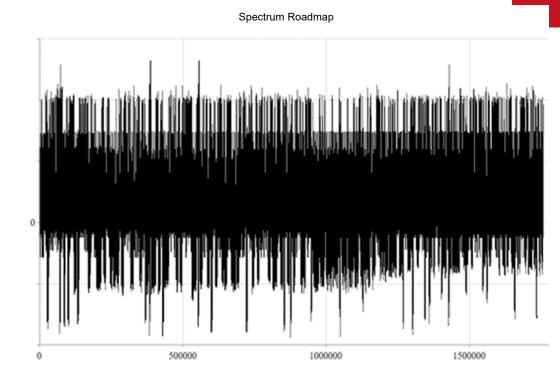
Fatigue Test: Instrumentation Layout

- Strain Gages in Major Load Paths (identical to STA)
- FTA gauges added for detailed model information
- 966 Total Gages (compared to 890 for STA)
- 44 Deflection Transducers

Fatigue Test: Hardware

- Simulated Hardware
 - Nosecone, Air Inlet Lip, MLG, Engine, H-Stabs, Rudder Actuators, H-Stab Actuators, Flaperon Actuators, Slat Actuators
- 1550 pads on full-scale article

Fatigue Test: Tracking


• Utilizing NCheck and NLign to capture fatigue test inspections and findings

Task III: FSFT Spectrum

- Test spectrum under development
 - Incorporating flight test correlated buff load data into spectrum which provides significant risk reduction for over/under testing
- Truncation of design spectrum is in work, necessary for practical test duration
 - Truncation of buffet load cycles is utilizing equivalent damage to reduce the required number of cycles
- Truncation and Marker Band verification testing in work
 - Test matrix covers representative materials and spectra
 - Validation of truncated spectrum derived from notched specimens
 - Marker Bands are added for correlation of failure analysis results

Task IV: Certification and Force Mgmt DevTask V: Force Mgmt

- Structural Certification is in work, Fatigue Test is up next
- Force Structural Maintenance Plan, Tracking System, and L/ESS Reports are in work
 - Usage data is not yet available to support these report items, however the framework is developed and has been delivered in some cases
- Leveraging lessons learned from legacy programs
- Task V on the horizon as aircraft are delivered and utilized

	LACCULING	Flaming
Task IV	Task V	
Certification & Force Mgmt Development	Force Mgm	t Execution
Structural Certification	L/ESS Execution	
Strength Summary & Operating Restrictions	IAT Execution	
Force Structural Maintenance Plan	Analytical Condition Inspection	
Loads/Environment Spectra Survey System Development	Rep	airs
Individual Aircraft Tracking System Development	-	it Database ution
Force Mgmt Database Development	DADTA, L/ESS	ates: & IAT, NDI, CPC
Technical Orders	Orders, Stru Certifi	, FSMP, Tech ctural Risk & cation, Service Life

T-7A RED HAWK

Summary

- The T-7A Red Hawk is the USAF's new trainer, designed with a digital engineering mindset
- T-7A ASIP is currently executing Pillars II & III, progressing towards the full scale fatigue test
 - Leveraging digital engineering and lessons learned from the static test and legacy fatigue tests
- As the program matures, we are working on establishing a vigorous ASIP, to help ensure the safety, reliability, and structural performance of the aircraft for many years to come

Acknowledgements

- T-7A Fatigue Team
- T-7A IPT
- T-7A SPO
- T-7A FSFT Test Lab Team

Questions?

